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1 Introduction to linear block codes

Recall the example from the last time of a code: we had some generator matrix,
some parity check matrix, and a means of doing some decoding. We will generalize
these ideas.

A block code is a code in which % bits (or, more generally, symbols) are input
and n bits (or, more generally symbols) are output. We designate the code as an
(n, k) code. We will start with bits, elements from the field GF'(2); later we will
consider elements from a field GF(q) (after we know what this means).

If we input & bits, then there are 2 distinet messages (or, more generally qk}.
Each message of n symbols associated with a with each input block is called a
codeword. We could, in general, simply have a lookup table with %k inputs and n
outputs. However, as k gets large, this quickly becomes infeasible. (Try k = 255,
for example.) We therefore restrict our attention to linear codes.

Definition 1 A block code C of length n with 2% codewords is called a linear
(n, k) code if and only if its 2% code words form a k-dimensional subspace of the
vector space of all n-tuples over the field GF'(2).

More generally, with a bigger field, a block code C of length n with ¢* is called
a linear (n. k) code if and only if its g® code words form a k-dimensional subspace
of the vector space of all n-tuples over the field GF(q). O

We remind ourselves of what a vector space is: we have an addition defined that
is commutative and closed; we have scalar multiplication that is closed, distributive,
and associative. We will formalize these properties a little further, but this suffices
for the present purposes. We will see (later) that we have a group structure on the
addition operation.

So what does this mean for codewords: the sum of any two codewords is a
codeword. Being a linear vector space, there is some basis, and all codewords can be
obtained as linear combinations of the basis. We can designate {go,g1,... ,Zk_1} as
the basis vectors. In a nutshell, it means that we can represent the coding operation
as matrix multiplication, as we have already seen. We can formulate a generator
matriz as

2o
21
G = .
Bk—1
G is a k x n matrix. If m = (mg,m1,... ,mr_1) is an input sequence, then the

output is the codeword
mG = mogo +mig1 + -+ Me_18k_1.

We observe that the all-zero sequence must be a codeword. Therefore, the minimum
distance of the code C' is the codeword of smallest weight.
Comment on circuits to implement encoding.



We have a vector space of dimension & embedded in a vector space of dimension
n, the set of all n-tuples. Associated with every linear block code generator G is a
matrix H called the parity check matrix whose rows span the nullspace of G. Then

if ¢ is a codeword, then

cHT = 0.

That is, a codeword is orthogonal to each row of H. From this we observe that

GHT =o.

There is also associated with each code a dual code that has H as its generator
matrix. The dual code is denoted as C*-. If @ is the generator for an (n, k) code,
then H is the generator for an (n,n — k) code.
Example 1 A (7,4) Hamming code can be generated by

The 16 codewords are

The parity check matrix is

H
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When regarded as a generator of an (7,3) code, the codewords of this code, the

dual code has the codewords

0000000
1101001
1011010
0110011
0111100
1010101
1100110
0001111



It may be verified that every codeword in C is orthogonal to every codeword in
it |

When we want to do the encoding, it is often convenient to have the original data
explicitly evident in the codeword. Coding of this sort is called systematic encoding.
For the codes that we are to talk about, it will always be possible to determine a
generator matrix in such a way the encoding is systematic: simply perform row
reductions and column reordering on G until an identity matrix is revealed. We can
thus write G as

G = [P|I}]
where [}, is the k x k identity matrix and Pis k x n — k. . Then
c=mG=m[Pl] = e ... ca_r_1lwio my ... my]

When G is systematic, it is easy to determine the parity check matrix H. It is
simply

H = [I,_x| — PT].

Note: in GF(2) (binary operations) the negative of a number is simply the number.
We could write (for binary codes)

H=I,_i P7].

The parity check matrix (whether systematic or not) can be used to get some
useful information about the code.

Theorem 1 Let a linear block code C' have a parity check matriz H. The minimum
distance of C' is equal to the smallest positive number of columns of H which are
linearly dependent.

This concept should be distinguished from that of rank, which is the largest number
of columns of H which are linearly independent.

Proof Let the columns of H be designated as dg,d;,... ,d,_;. Then since cHT =
0 for any codeword c, we have

0=codo+c1di1 +--- + cp—1dn—1

Let ¢ be the codeword of smallest weight, w = w(¢) = din. Then the columns of
H corresponding to the elements of ¢ are linearly dependent. O

Based on this, we can determine a bound on the distance of a code:
dpin <n—k+1. The Singleton bound

This follows since H has n — k linearly independent rows. (The row rank = the
column rank.) So any combination of n — k + 1 columns of H must be linearly
dependent.

For a received vector r, the syndrome is

&E=rHT.

Obviously, for a codeword the syndrome is equal to zero. We can determine if a
received vector is a codeword. Furthermore, the syndrome is independent of the
transmitted codeword. If r = ¢ + e,

s=(c+e)HT —eHT.



Furthermore, if two error vectors e and e’ have the same syndrome, then the error
vectors must differ by a nonzero codeword. That is, if

eHT = 'HT
then
(e—e)HT =0

which means they must be a codeword.

2 Maximum likelihood detection

Before talking about decoding, we should introduce a probabilistic criterion for
decoding, and show that it is equivalent to finding the closest codeword. Given
a received vector r, the decision rule that minimizes the probability of error is to
find that codeword c; which maximizes P(c = ¢;|r). This is called the mazimum a
posteriori decision rule. (Proof that this minimizes probability of error is shown in
the communications class.) We note by Bayes rule that

P(c¢)P(r|c)

Plelr) = Pa)

where, for example, P(r) is the probability of observing the vector r. Now, since
P(r) is independent of ¢, maximizing P(c|r) is equivalent to maximizing

P(c)P(r|c).

If we now assume that each codeword is chosen with equal probability, then maxi-
mizing P(c)P(r|c) is equivalent to maximizing

P(rl|e).

A codeword which is selected on the basis of maximizing P(r|c) is said to be selected
according to the mazimum likelihood criterion. We shall assume throughout the text
a maximum likelihood criterion.
Let us see what this means for us.
mn
P(rlc) = [] P(rile:)

i=1

Assuming a BSC channel with crossover probability p, we have

1— f M — Ty
Prley=q1 7 T
P ife; #

Then

n

P(l‘lC) = H P(‘f'i%ﬂ'i) e (]_ = p)#[p':‘.:\f'ijp#(pi?éci)
i=1
P d(c,r)
L n—#(piFei) FpiFe) _ 1 — p)™ )

(1-p) P i i
Then if we want to maximize P(r|c), we should choose that ¢ which is closest to
r, since 0 < (p/(1 — p)) < 1. Thus, under our assumptions, the ML criterion is

the minimum distance criterion. In every case, we should choose the error vector of
lowest weight.



3 The standard array and syndrome table decod-
ing
Suppose we send ¢ and we receive
r=c¢-+e.

Assuming that error sequences with lower weight are more probable than error
sequences with higher weight (the maximum likelihood criterion), we want to de-
termine our decoded word ¢’ such that the error sequence e’ satisfying

r=c +e

has minimum weight.
One way to do this is to create a standard array. We form it the following way:

1. Write down a list of all possible codewords in a row, with the all-zero codeword
first.

2. From the remaining n-tuples which have not already been used in the standard
array, select one of smallest weight. Write this down as the coset leader under
the all-zero codeword. On this row, add the coset leader to each codeword at
the top of the column.

3. Repeat step 2 until all the n-tuples have been listed.

An example standard array for a (7, 3) code is shown here, where

1 00 01 11
G=(0 1 0 1 0 1 1
g 8 1 1 1. @ 1



1. There are 2¥ codewords (columns) and 2" possible vectors, so there are 2"—F
rows in the standard array.

2. The sum of any two vectors in the same row of the standard array is a code
vector.

3. No two vectors in the same row of a standard array are identical. Because
otherwise we have

ei+ci=e;+c;, withi#j
which means ¢; = ¢;, which is impossible.

4. Every vector appears exactly once in the standard array. We know every
vector must appear at least once, by the construction. If a vector appears in
both the Ith row and the mth row we must have

e+ ¢ =en+ C;
for some 7 and j. Let us take [ < m. We have
en =€ 1+c¢—Cj =€ 1+ Cg

for some k. This means that e,, is on the [th row of the array, which is a
contradiction.

Each row of the standard array is called a coset; we will encounter the term coset
in a more formal setting soon.

To decode with the standard array, we locate the received vector r in the stan-
dard array. Then the error sequence is the coset leader; the best guess of the
transmitted word is the codeword at the top of the column. For example, if

r=0011011
then
¢ =0011101.

Since we designed the standard array with the smallest error patterns as coset
leaders, this is the ML decision.

As observed before, there are 2" % coset leaders. These are called the correctable
error patterns. Fact: an (n.k) code is capable of correcting 2"—* error patterns.

The standard array can be used to decode linear codes, but suffers from a major
problem: the memory requirements quickly become excessive. We want to look for
easier approaches.

A first step (which doesn’t go far enough), is to use the syndrome in the decoding.
Based on the properties of the syndrome above, all elements in a row of the standard
array have the same syndrome. We therefore only need to store syndromes and their
associated error patterns.

For the code whose standard array was given before, we have
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GENERATOR AND PARITY CHECK MATRICE OF CYCLIC
CODES
To construct the 4 by 7 generator generator matrix G , we start

with four polynomials represented by g(X) and three cyclic shifted
versions of it as shown by:-

gX)=1+X+X  (zero shift)
Xeg(X)=X+X+X" (1-cydicshift).

Xeg(X) =X +X +X° (2 - cyclic shift).
Xog(X) =X +X'+X° (3 -cyclic shift).

If the coefficients of these polynomials are used as elements of
the rows of a 4 by 7 matrix, we got:-

1
0
|
|

b O = O
Q= O O
-0 O O

0
1
I
0

(e B e N = B
oSO -




TABLE + 2 A (7,4) CYCLIC CODE GENERATED BY g(X)=1+X+X?

Message Code word
0O00 (000000  0=0.gX
1000 (1101000 1+X+X =gl
0100 O110100  X+X+X=X
100 (011100 I+Xexer=(14+ngy
0010 (1110010 1+X+Xex=(1+x%X
G010 011010  X+r+x=xg
0110 (000110 1+X4+X1=(0+X+X001
T110 Q101110 X+P4+X+x=0X+r5l
0001 (01000 I+XEX=(+X:X0N
1001 Q111001 X+X4+X+Xe=(+1%0
0101 Q100100 14+X+X4X=(1+ X%
100 001101  X+X4LX6=XgN
0011 100011 X+ X5+ X8=(X+ X"+ X(X)
Q01D @001 0th) 4P+l +x =0+ X+ %4+ 80)
(U VI R N I A (N S 49 ¢F% L) 8 1)
G110 (L1t 14X+ 15418
=(14 X2+ )

If the first row is added to the third row and the sum of the first
two rows is added to the fourth row, we obtain the following

matrix:



1 1 01 0 0 O]

01 10100
=1, 11001 of

1 01 00 0 1_

Whg:h is in systematic form. This matrix generates the same code
as G.
The generetor matrx in sysematc form can lso be formed ey, Dividing
1+ by the generator polynomial fX)for i = 0,1, ..., k — 1, we obtai
Xt = a(X)g(X) + b(X),
where b,(X) is the remainder with the following form:
b(X)=by+ b X+ oo + b, X5

Since B(X) + X for i=0,1,.....k — 1 are multples of g(X), they ate code
polynomials. Arranging these  code polynomials as rows of & X n matrix, we obtaia



_bk-l,ﬂ bk_lli bk—l.l

bﬂi bﬂ,n-k—l 1 0 0
by, by 0 10
bli bl.n-k—‘l O 0 1

bk-l,n-k-l O 0 D

1

..(5)

Which is the generator matrix of C in systematic form, The corresponding parity-
check matrix for Cis

1 0 0

0 lelJ blﬂ' bgo
bﬂl bll bii
bZl

=
=2
(=1
B
o
=]

l bll,n-k-i bl.n-k-l bi.n-k-l

bk-l.ﬂ
be-11

by-1.2

bk- 1,n—k-1_]

..(6)



Example 3.
Again, let us consider the (7, 4) cyclic code generated by g(X) =14 X+ X*. Dividing
X3, X4 X5, and X° by g(X), we have

Xi=gX)+(14X),
X = Xg(X) + (X + X%)
Xs = (Xt + Dg(X) + (1 + X + X3),
Xe=(X* 4+ X+ glX) + (1 + X7
Rearranging the equations above, we obtain the following four code polynomials:
WX)=1+4X + X
vwiX)= X+X7 + X4,
wX)=1+X+X? + X3,
wX)=1 +X° + X8
Taking these four code polynomials as rows of a 4 X 7 matrix, we obtain the following
gencrator matrix in systematic form for the (7, 4) cyclic code:
110100 0]
0110100
1110010
101000 1]

which s identical to the matrix G’ obtain earlier in this section.




EXAMPLE 4 : Construct Parity Check Matrix H of example 2?
We simply find the party polynomial H(X) as follow:

X7 4-1
h(X) =
X ="gx)
— 14 X+ X2+ X*.
The reciprocal of h(X) is

XOh(X-1) = X4(1 = X~1 + X2 + X-4),

— 14+ X2 4 X34 X0,
Also X e h(X) =X+X + X"+ X,
And X° e h(X) = X2+ X"+ X> + X°.

Then using the coefficients of these three equations as the
elements of the rows of the 3 by 7 parity check matrix, we got

H =

oo R
o RO
_ O =
O ==
e
e
= oo

Here H' is not in systematic form therefore we must put it into a
systematic by add 3" row with the 1% row to obtain :-

L4 8 1 89 I 1
H=0 1 01 1 10
g I e Y )



Convolution Codes

Convolution codes were first introduced by Elias [1] in 1955 as an
alternative to block codes.

Convolution codes differ from block codes in that the encoder
contains memory and the n encoder outputs at any given time
unit depend not only on the k inputs at that time unit but also on
m previous input blocks. An (n, k, m) convolutional code can
be implemented with a k-input, n-output linear sequential circuit
with input memory m. Typically, n and k are small integers with
k < n, but the memory order m must be made large to achieve
low error probabilities.

The encoder of convolution code for a binary (2, |, 3) code is
shown in Figure (1). Note that the encoder consists of an m = 3-
stage shift register together with n = 2 modulo-2 adders and a
multiplexer for serializing the encoder outputs. The mod-2 adders
can be implemented as EXCLUSIVE-OR gates. Since mod-2
addition is a linear operation, the encoder is a linear feedforward
shift register All convolutional encoders can be implemented using
a linear feedforward shift register of this type.

yi1)

Fig. 1



The information sequence u = (ug, U;, U,,. . .)enters the
encoder one bit at a time. Since the encoder is a linear system,

the two encoder output sequences v = (w” , v" , v",...0)

s Vg puumn
and v® = @ »?,v®,..) can be obtained as the

convolution of the input sequence u with the two encoder
"impulse responses." The impulse responses are obtained by
letting u = (1 0 0 » » ¢) and observing the two output sequences.
Since the encoder has an w-time unit memory, the impulse

responses can last at most m + 1 time units, and are written g*)

1 1) (1 1 2 2 2 2
= (98 } ;9; . ,9(2" ):----r Q;En)) and g'¥) = (9’8 ) ,9(1 . ,g; I gfn))

For the encoder of Figure 1

g =1 0 1 1)
g2 =( 1 1 1).

The impulse responses g and g‘® are called the generator
sequences of the code. The encoding equations can now be
written as

" (1) —. (1)
V=u=xg
\
(2) __ (2)
V& = u x g,

Where * denotes discrete convolution and all operations are
modulo-2. The convolution operation implies that for all | = 0,



If the generator sequences g'*’ and g'<’ are interlaced and then
arranged in the matrix

{1} (2 1),{2 1) {2 (1) (2) -
gﬂlgg) ()H g(]g) .
(1) Al (1) (1) 4 (2)
g%)}gg) gl)gl v lgm- mbn
1,02 l (21 }ol2)
G= gi(J)g(ﬂ) o H gm- m- gm )

=X 3}
Where the blank areas are all zeros, the encoding equations can
be rewritten in matrix form as

= uG,

Where all operations are modulo-2. G is called the generator
matrix of the code. Note that each row of G is identical to the
preceding row but shifted n = 2 places to the right, and that G is
a semi-infinite matrix, corresponding to the fact that the
information sequence u is of arbitrary length. If u has finite
length L, then G has L rows and 2(m + L) columns, and v has
length 2(m + L).

Example 2: Ifu (10 111), then



.t
H

uy
11 01 11 11 i

(101 11 11
=1 0111 1101 11 11
1101 11 11

i 1101 11 11

~(11,01,00 01010100 11,/

As a second example of a convolutional encoder, consider the (3,
2, 1) code shown in Figure 2.

Fig .2
Since k = 2, the encoder consists of two m = 1-stage shift
registers together with n = 3 mod-2 adders and two



As can be seen from the encoding circuit. After multiplexing, the
code word is given by

— (y{1)9y(2 1),,(2 1),,(2

EXAMPLE 3:
If u® = (10 1) and w = (1 1 0), then
v¥o=(1 0 D*(1 D+ 1 0+© )=( 0 0 1)
VO =(1 0 Dx@ D4 1 01 0= 0 0 1)

=1 0 D1 D+ 1 O)x(1 O)=(0 0 1 1)
and
v=(110 000 001 1 1 1.

L L

The generator matrix of a (3, 2, m) code is

eihetey gitgPgl) gl b gt )
gihgath gilggl) gin g0 gin

ligtigfh oo glhgPhglhe ghellel

6= elellelh - gl gl gttt

And the encoding equations in matrix form are again given by
v = uG. Note that each set of kK = 2 rows of G is identical to the
preceding set of rows but shifted n = 3 places to the right.



Hence, the output polynomial of path 1 is given by
¢(D) = g"{D)m(D)
={1+D+D*(1+D’+D*
=1+D+D"+ D’ +Df

From this we immediately deduce that the output sequence of
path 1is (1111001). Similarly, the output polynomial of path 2 is
given by

(D) = g#(Dm(D)
= (1 + D31+ D° + DY
=1+D*+D*+D'+D°+ D¢

The output sequence of path 2 is therefore (1011111). Finally,
multiplexing the two output sequences of paths 1 and 2, we get
the encoded sequence

¢ = (11, 10, 11, 11, 01, 01, 11)

Note that the message sequence of length L = 5 bits produces an
encoded sequence of length n(L + K- 1) = 14 bits. Where L
represents number of bits in the input message , and M-shift
register requires k=M+1 shifts for a message bit to enter the shift
register and finally come out. In this example M=2 ,k=3, and
n=2.



Hence, the output polynomial of path 1 is given by
¢"(D) = g"{Djm(D)
={1+D+D¥1+D°+D
=1+D+D"+D*+ D¢

From this we immediately deduce that the output sequence of
path 1 is (1111001). Similarly, the output polynomial of path 2 is
given by

¢“{D) = g=(Dim(D)
= (1 + D3(1 + D’ + D4
=1+DP+DP+D'+ D+ DF

The output sequence of path 2 is therefore (1011111). Finally,
multiplexing the two output sequences of paths 1 and 2, we get
the encoded sequence

e = (11, 10, 11, 11, 01, 01, 11)

Note that the message sequence of length L = 5 bits produces an
encoded sequence of length n(L + K- 1) = 14 bits. Where L
represents number of bits in the input message , and M-shift
register requires k=M+1 shifts for a message bit to enter the shift
register and finally come out. In this example M=2 ,k=3, and
n=2.



EXAMPLE 6: For the (2, 1, 3) code of Figure 1, the generator
polynomials are g(D) =1+ D? + D’ andg®(D) = 1+ D +
D? + D’. For the information sequence u(D) =1 + D° + D’ +
D?, the encoding equations are

WD) = (1 4+ D4 D* + D4Y(L + D% 4 DY) =1 4 D
VD)= (1+D*+ D'+ D4Y(1 + D + D* + D3)
=14 D+ D7+ D¢+ D5 4 D7

And the code word is

W(D)=1+4 D -+ D3+ D7 + D° + D! + D14 4 D15,
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UNIT 1lI
ERROR CONTROL CODING

PART-A(2marks)
. What is the use of error control coding?
. What is the difference between systematic code and non-systematic code?
. What is a Repetition code?
. What is forward acting error correction method?
. What is error detection?
. Define linear block code.
. Give the properties of syndrome in linear block code.
. What is Hamming code?
. When a code is said to be cyclic?
10. Give the difference between linear block code and cyclic code.
11. What is generator polynomial?
12. What is parity check polynomial?

OOk~ WwhN —

How will you convert a generator polynomial into a generator matrix?
How will you convert parity check polynomial into a parity check matrix
How a syndrome polynomial can be calculated?

Give two properties of syndrome in cyclic code.

Define Hamming distance (HD).

Define Weight of a code vector.

Define minimum distance?

20. What is coset leader?
21. What is convolutional code?

a2,

Define constraint length.

23. What is meant by tail of a message?
24. What is state diagram?
25. What is trellis diaaram?

1. Explain Linear Block Code.

2. Explain cyclic code in detalil.

3. Explain Convolution codes.

4. Write the procedures for designing an Encoder circuit.

5. Write the procedures for designing a syndrome calculator circuit.

PART-B
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